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ABSTRACT 

We study Lagrangian systems on a closed manifold M.  We link the 
differentiability of Mather's /~-function with the topological complexity 
of the complement of the Aubry set. As a consequence, when M is 
a closed, orientable surface, the differentiability of the D-function at a 
given homology class is forced by the irrationality of the homology class. 
This allows us to prove the two-dimensional case of a conjecture by Mafi~. 

1. I n t r o d u c t i o n  

We s t a r t  by  recal l ing some facts abou t  A u b r y - M a t h e r  theory.  Let  M be a 

smooth ,  closed~ connected  n-d imens iona l  mani fo ld  and  L be a Lagrang ian  on 

the  t angen t  bundle  T M ,  t h a t  is, a C r ,  r >_ 2 funct ion on T M  which is convex 

and super l inear  when res t r i c ted  to  any fiber. The  Euler  Lagrange  equa t ion  then  

defines a flow (I)t on TM~ comple te  in the  au tonomous  case. T h roughou t  this  

p a p e r  we assume M to be  endowed wi th  a fixed R ie ma nn  metr ic ,  wi th  respect  

to which we evaluate  d is tances  and norms in the  t angen t  bundle;  our resul ts  do 

not  depend  on the metr ic .  Denote  by  7~ the canonical  p ro jec t ion  T M  --+ M .  

For x, y 6 M define ht(x ,  y) as the  min imum,  over all  abso lu te ly  continu- 

ous curves 7: [0, t] --+ M wi th  7(0) = x, 7( t)  = y, of f t  L ( v , ~ ) d s .  Then,  by 

Fa th i ' s  weak K A M  theorem ([Fa97a]) there  exists  c(L) • R such t h a t  

lira inf t -+~ (ht (x, y) + c(L) t )  is finite for every x, y. This  l im inf, or ig inal ly  defined 
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in [Mr93], is called the Peierls barrier and denoted h(x, y) and c(L) is Mafi~'s 

critical value (see [Mn97]). The Aubry set -4o is then defined in [Fa97b] as the 

zero locus of h restricted to the diagonal in M x M. The canonical projection 7r 

is a bi-Lipschitz homeomorphism between Ao and the set 4o  of velocity vectors 

of orbits in ,40 (Graph Property).  Furthermore fi-o is compact and ast-invariant. 

Fathi's weak KAM theorem asserts that there exists a Lipschitz function u+ 

(resp. u_) such that u + ( 7 ( t ) ) -  u+(7(0)) < f~(L + c(L))(%~/)ds for every abso- 

lutely continuous path 7: [0, t] --+ M, which is written u -~ L + c(L) for short, 

and such that  for every x E M, t E R there is a C ~ path 7: [0,t] --+ M with 

"y(0) = x (resp. 7(t) = x) achieving equality. Such functions come in pairs, called 

conjugate pairs (u+, u_) such that  u+ _< u_ with equality on Ao. Theorem 6 of 

[Fa97b] asserts that h(x, y) = sup{u_ ( y ) -  u+ (x)}, where the supremum is taken 

over conjugate pairs of weak KAM solutions. 

For every closed l-differential w, L - w is a convex and superlinear Lagrangian, 

we sometimes denote ~4~ its Aubry set No ( L -  co). Mather's c~-function is defined 

in [Mr90] as 
0 

c~(co) = - m i n { /  (L - co)d#: # E M }  
J r  M 

where At is the set of closed measures on TM, that  is (see [Ba99]) the compactly 

supported probability measures g on TM such that f df d# = 0 for every C 1 func- 

tion f on M. In other words, those are the measures with a well-defined homology 

class. The measures achieving the minimum are invariant by the Euler-Lagrange 

flow Ot of L (see [Ba99]). The quantity c~ defines a convex and superlinear func- 

tion on Hi(M, N), twice the squareroot of which is also called stable norm when 

L is a metric (see [Mt97] and the references therein). It is convex and superlinear 

and its Fenchel transform is Mather's ~-function on H1 (M, N), which is defined, 

for every real homology class h, as 

~(h) = m i n { /  (L)d#: # E 3,4, [#] = h}. 
J r  M 

Let .tdu be the closure in TM of the union of the supports of measures in 3,t 

achieving the minimum in the expression of a. Such measures are called co- 

minimising measures, or just minimising measures if [co] = 0. We call Mather set 

of L and co, and denote ~/l~ the projection 7r(JQ~o); it is contained in .4., ([Fa97a]). 

In particular we call Mather set of L the Mather set 3.40 corresponding to the 

zero cohomology class. 

For every [w] • H 1 (M, R) we call F~ the maximal face of the epigraph F~ of 

a containing [co] in its interior (see [Mt97]), and Vect Fw the underlying vector 
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space of the affine subspace generated by F~ in Hi(M,  R). Beware that Vect Fw 

is not, unless F~ contains the origin, the vector space generated by F~. Note that  

F~ = {[w] } if a is strictly convex at [~o]. The value of c~ at the null cohomology 

class is Mafi6's critical value c(L). 

In section 3 we relate the dimension of the faces of F~ to the topological 

complexity of the complement of ~4~o in M, as follows. Let C~(e) be the set of 

integer homology classes which are represented by a piecewise C 1 closed curve 

made with arcs contained in ,4~, except for a remainder of total length less than e. 

Let C~ be the intersection of C~(e) over all c > 0, and let Vw be the vector space 

spanned in HI(M,  R) by Cw. Note that V~ is an integer subspace of HI(M,R) ,  

that  is, it has a basis of integer elements (images in Hi (M,  R) of elements of 

HI (M,Z) ) .  

We denote 

* by Vff the vector space of cohomology classes of one-forms of class C 1 that  

vanish on V~, 

• by G~ the vector space of cohomology classes of one-forms of class C 1 that 

vanish in TxM for every x E fl,~, 

• by E~ the vector space of cohomology classes of one-forms of class C 1, the 

supports of which are disjoint from A~. 

THEOREM 1: We have E~ C VectF~ C G~ c V~. When M is a closed, ori- 

entable surface all inclusions are equalities and, furthermore, Vect F~ is an integer 

subset of Hi (M,  R). 

THEOREM 2: When M is a dosed, orientable surface, the vector space Vect F~ 

is lower semi-continuous with respect to the Lagrangian. 

Theorem 1 means that when M is a closed, orientable surface, the dimension 

of the face F~ equals the number of homologically independent closed curves 
disjoint from A~. 

As a corollary we get differentiability results for/3. The idea here was given to 

the author by Albert Fathi. 

Let h be a homology class. A cohomology class ~ is said to be a subderivative 

for/3 at h if < w, h >=/3(h)  + a(w). The subderivatives for ~ at h form a face 

Fh of F~. By Proposition 6 the Aubry (resp. Mather) sets for all the cohomology 

classes in the interior of this face coincide. We call that Aubry set (resp. Mather 

set) the Aubry set (resp. Mather set) of h, and denote it Ah (resp. A4h). 

Recall that  the tangent cone to the epigraph of fl at h is the smallest cone in 

HI (M,R)  × R with vertex (h,/3(h)) and containing the epigraph of/3. We say 
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that the/3-function is differentiable at h in the direction d if the tangent cone to 

the epigraph of/3 at h contains the affine subspace h + F~d. 

Thus we say the/3-function is differentiable in k directions at a homology class 

h if the tangent cone at h to the epigraph of/3 splits as a metric product of ]Rk 

and another cone which contains no straight line (affine subspace of dimension 

one). 

We say a homology class h is k-irrational if k is the dimension of the small- 

est subspace of HI(M,•)  generated by integer classes and containing h. In 

particular, 1-irrational means "on a line with rational slope" and dim H1 (M, R)- 

irrational means completely irrational. We call rational any homology class of 

the form 1/nh, where n is an integer and h is the image in H1 (M, 1~) of an integer 

homology class. The integrality of Vect F~ has the following consequence: 

COROLLARY 3: Let M be a closed, orientable surface, and L be a Lagrangian 

on M.  A t  a k-irrational homology class h the/3-function of L is differentiable in 

at least k directions. 

This was conjectured, and proved in the torus case, by V. Bangert. A similar 

result was proved for twist maps of the annulus by J. Mather in [Mr90]. See also 

[D93]. 

In particular, when M is a closed, orientable surface,/3 is differentiable in every 

direction at a completely irrational class. Rademacher's theorem says a convex 

function is differentiable almost everywhere but does not provide an explicit set 

of differentiability points. In [BIK97] a C r metric is constructed on a torus of 

dimension 8r + 8, such that  its stable norm is not differentiable in all directions 

at some completely irrational class. 

On the other hand, if/3 is differentiable in one (resp. no) direction at some 

homology class h, then h must be 1-irrational (resp. zero). Also note that  at 

every non-zero class/3 is differentiable in the radial direction. 

In the next section we investigate generic properties of Lagrangian systems. 

We say a property is true for a generic Lagrangian if, given a Lagrangian L, 

there exists a residual (countable intersection of open and dense subsets) subset 

O of C°~(M) such that the property holds for L + f ,  V f  E O. Mafi~ ([Mn96, 

CDI97]) proved that for a generic Lagrangian, there exists a unique minimising 

measure and put forth in [Mn96] the 

CONJECTURE 4 (Mafi~): For a generic Lagrangian L on a dosed manifold M 

there exists a dense open set Uo of H i ( M ,  R) such that Vw E Uo, Alia(L) consists 

of a single periodic orbit, or fixed point. 



Vol. 134, 2003 ON AUBRY SETS AND MATHER'S ACTION FUNCTIONAL 161 

As an application of Theorems 1, 2, and the results of [Mt97] we prove this 

conjecture to be true when M is a closed, orientable surface. 

2. Preliminary results 

Recall that  by a theorem of Fathi ([Fa00], p. 104) there exists a pair of conjugate 

weak KAM solutions (u+, u_) such that u+ and u_ coincide only on A~. The 

main result of this section is 

PROPOSITION 5: For every ~ > 0 there exists an integrable, non-negative func- 

tion G~ on M such that  G[I(O) = .4o and for every absolutely continuous arc 

7: [0, t] ) M we have 

/o /o (1) (L + c(L))(~,  ~/)dt >_ n+(~(t))  - u+(~(0)) + a d ~ ( t ) ) d t  - ~. 

Proof: Since M is compact and the flmctions ht are equi-Lipschitz on M x M 

([Mr93], see also [Fa00], p. 105), by Ascoli's theorem, for every e > 0 there exists 

T > 0 such that 

Vx, y E M,  t > T ~ h t ( x , y )  > h ( x , y )  - c ( L ) t -  ~. 

Take T(¢) to be the infimum of such T's. 

Let 3': ~ -+ M be a C 1 arc. Take ¢ > 0. Let ?(~ be ¢ /max(I ,  T(¢)) times the 

characteristic function of the closed set (u_ - u + )  -1 ([2c, + ~ [ ) .  We prove, for all 

positive t, 

/o /o (2) (L + c(L)) (% ~)(s)ds > u+('~(t)) - u+(~/(0)) + ,k~(7(s))ds - e. 

The proposition follows by taking G~ to be the upper bound of the functions X5 

over all 5 < e. 

Define a sequence in ]I~ by to = 0 and 

ti+l = max{t _> ti: t - ti >_ T(~) and Leb([ti,t] N 7-1 ( supp(~) ) )  < T(~)} 

where Leb denotes Lebesgue measure on R. Observe that 7(ti) E supp(,(¢), that 

t~+l - t~ _> T(¢), and that for all x between t~ and ti+l 

~t7 X~(7)(s)d s < eLeb([ti, x] n ~/-l(supp(xE))) < 
- max(i ,  T(~)) - 
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We have, taking tn to be the last ti before t, 

/o (;+ ) t(L+c(L))(7';~)(s)ds= E L(%~/)(s)ds+c(L)( t i+l- t i )  

+ L(~/,~/)(s)es+c(L)(t-t~), 

thus, since u± are weak KAM solutions, and by the definitions of ht, and T(e),  

i t L(7,  ~/)(s)ds + c(L)t > E ht~+l-t~ (7(ti),  7(ti+l)) 

+ c ( L ) ( t i + l  - t i )  + u + ( 7 ( t ) )  - u + ( 7 ( t n ) )  

>- E (h(7(ti),7(ti+i)) - ~) + u+(7( t ) )  - u+(y(tn)) 
t~+l ~_t 

>- E (u-(7(ti+l)) - u+(7( t i ) )  - e) -~- u+(7(t)) - u+(7(tn)) 
ti+ l ~_t 

n 

_ ~ ( u _  (-y(t~)) - u+(~(t~))  - ~) + u + ( ~ ( t ) )  - u + ( ~ ( 0 ) )  
i=0 

___~+(-y(t)) - u+(-y(0)) + ~ { i / t ~  __ t} 

> ) . ( ~ ) ( s ) ) d ~  + ~,+(7(t)) - ~,+(~(0)) 
i=1 t~-i 

> ~ + ( ~ ( t ) )  - ~+(-~(0))  + x ~ ( ~ ) ( ~ ) d ~ -  ~. . 

2.1. PROOF OF PROPOSITION 6. The next  proposit ion enables us to speak of 

the Aubry  set of a face of the epigraph of a ,  and therefore of the Aubry  set of a 

homology class. 

PROPOSITION 6: If  a cohomology class [a;1] belongs to the maximal face F~ of 
Fa containing [w] in its interior, then A~ C A~I. In particular, if  [~dX] belongs to 
the interior of F~, then A~ = A ~ .  Conversely, if two cohomology classes w and 
~1 are such that Aw N .Aw~ ~ O, then a(w) = a(aw + (1 - a)wl) [or all a E [0, 1], 

i.e., ra has a face containing w and wl. 

Proof We can find w2 E F~ and a C ]0, 1[ such tha t  w = awl + (1 - a)w2. By 

[Fa98a], the following proper ty  characterises A~: 

Yx E Aw, 3tn ~ +(x~, and %:  [0, tn] --+ M, such tha t  7(0) = 7(tn) = x 
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fo t° and  (L -co)('Tn,';/n)(s)ds + ~(w) t  -+ O. 

N o w  (M = acd 1 -~- (1 -- a)c.d2, and  c~(cJ) = a a ( w l )  + (1 - a)c~(aJ2) since [Wl], [c~2] E F~. 

Therefore  

a[ ~otn(L - Wl)(~/n,~/n)(s)ds + a (w l ) t l  

IF ] + ( 1  - a) 4 0 .  

Observe  t h a t  b o t h  s u m m a n d s  on the  left are non-nega t ive ,  for if u _  is a weak 

K A M  solut ion for L - c o i ,  i = 1, 2, we have 

o tn (L - wi)(~/n, ~n)(s)ds  + (~(wl)t ~U--(~/(tn)) -- U- ('7(0)) 

= u _  ( x )  - ( x )  = 0 

tn 
hence fo ( L -  w i ) ( 7 n , ~ ) ( s ) d s  + a ¢ ~ l ) t  ~ 0 when  n --+ c~. 

Conversely,  let (% "~) be  an  orbi t  in A~ n A ~ .  We have 

ot[L - w + a(w)] (7 ,  ~)(s)ds  = u (7 ( t ) )  - u (7(0) ) ,  

ot[L - wl + c~(Wl)](7, ~/)(s)ds = u l (7 ( t )  ) - ~l(~f(0)), 

where  u (resp. u l )  is a weak K A M  solut ion for L - w (resp. L - wl).  Therefore  

ot[L - (aa~ + (1 - a)wl)  + c~(aw + (1 - a )wl ) ] (? ,  ~/)(s)ds = 

a[u(~/(t)) - u(~(0))]  + (1 - a)[ul(~/(t)) - Ul(7(0))]  

+t[c~(aw + (1 - a )wl)  - ac~(w) - (1 - a )a (wl ) ) ] .  

The  first two s u m m a n d s  on the  r ight  are b o u n d e d  below, hence  for the  s u m  to  be 

b o u n d e d  below we mus t  have ~(w) = a(~(w) + (1 - a)c~(Wl) = (~(aw + (1 - a )wl) ,  

s ince by convexi ty  of  c~, a(aw + (1 - a)wl)  <_ ac~(w) + (1 - a)(~(w~). | 

3. Faces of  the epigraph 

Proo f  of  G~ C V ~ :  I t  a m o u n t s  to  showing t h a t  a one- form in G~ vanishes on 

V~. Let  w E G~ and  let h be represented  as in the  defini t ion of  V~ for some c > 0. 
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Call S the part  of the curve representing h which consists in segments of JI~, and 

R the remainder. Now < [w], h > =  f s  w + fR w where the first summand is zero, 

and the second summand can be bounded by Ce, where C depends on L and w 

only. The conclusion follows since ~ is arbitrarily small. | 

Proo fo fVec tF~  C G~: Take COl,CO 2 E Yw. By Proposition 6 the Aubry sets 

for L - wt and L - w2 coincide with M,~. The weak KAM solutions (u+, u_) are 

differentiable at every point of A(~+ ~-) (see [Fa97a]) with derivative the Legendre 

transform of the (well defined) tangent vector. This derivative is Lipschitz and, 

furthermore (see [Fa00], p. 92), we have 

OL - w 

(3) I~±(¢(y))-~±(O(x))- Ov (¢(*)'~/(0))°DxO(Y-*)I<KlY-xl2 

where ¢ is a local chart on M, x and y are two points in the inverse image of 

~4~ by the chart, ~(0) is the tangent vector to ~4~ at ¢(x), and K only depends 

on the chart. So Whitney's  extension theorem ([Fe69], theorem 3.1.14) allows 

us to take fil and ~2 two C 1 functions, the derivatives of which coincide with 

that  of u~_ and u~_ respectively along A~o. Replace w2 by w2 + dg l  - dg2. This 

one-form coincides with Wl in the tangent space to every point of A~, hence the 

cohomology class [021 -- W2] belongs to G~. | 

Proofo fE~  C Vect F~: Assume, replacing if necessary L by L -  w, that  w = 0. 

We actually prove a slightly stronger statement.  Call T0 the intersection with 

A0 of the union of Hausdorff limits, when r/ tends to 0, of supports of L - r/- 

minimising measures, and call To its projection to M. Let r /be  supported away 

from To. 

For starters we prove that  there exists 6 > 0 such that  for all L+5~-minimising 

measure #, for all (x, v) in supp(g),  we have 51~l,(v)l <_ GI(X) where G~ comes 

from Proposition 5. 

Indeed, assume otherwise. Then there exists a sequence 6n > 0, L + 6n~- 

minimising measures #n, and points (zn, vn) in supp(#n) such that  for all n we 

have 

(4) ~nl'xn(v~)l > at(x~). 

The sequence (x~,v,~) is bounded in T M  because the measures #~ sit in the 

energy levels a(6~[@. So we may assume (x,~,vn) ---+ (x,v).  Then we have 

Gl(x) = 0, so x ¢ A0. Besides, (x, v) belongs to a Hausdorff limit point of the 

sequence of compact sets supp(p,J ,  so x C To. But then for n large enough, 
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since r/is supported outside To, we should have r/x~ (Vn) = 0 ,  which contradicts 

Equation 4 since G1 is non-negative. 

Therefore, we see that for every orbit ? in the support of an L + 5rl-minimising 

measure #, by Equation 1 we have 

i t (L + c(L) (~)(7,'~)(s)ds > + 

u+(~/(t)) - u+ (7 (0 ) )+  (G1 + 5r;)(~, a/)(s)ds - 1 

so, by averaging and letting t go to infinity, 

- c (L  :t: 5~) >_/(G1 + 5y)dp - c(Z) 

whence, since G1 4- 6~ is non-negative on the support of #, 

a(O) = c(L) > c(L ± a~l) = a(+5~). 

By convexity of (~, we have 2(~(0) ~ (~((~q) + ~( -Sq)  so we get (~(0) = c~((~r]), 

which implies that 5[r;] belongs to F0. | 

3.1 .  THE TWO-DIMENSIONAL CASE. W e  prove that when M is a closed surface, 

V~ C E~, thus proving all inclusions to be equalities. The same arguments prove 

that Eu+,u- = Vect F0 for every conjugate pair of weak KAM solutions (u +, u - )  

for L. Since V~ is an integer subset of H1 (M, R) this implies that Vect F,~ is an 

integer subset of Hi(M,  R). 
To that  end we prove that there exists a neighborhood [7 of A~ such that every 

closed curve contained in U has its homology class in V~. First let us show how 

this implies the equality. If a 1-form a vanishes on every element of V~, then 

there exists a function f defined on U such that the restriction of a to U is equal 

to dr. Extend f to M; now ct - df is cohomologous to a and supported away 

from U. 

Assume the surface has genus greater than one, the genus one case being 

treated by Bangert in [Ba94], and assume our reference metric g has negative 

curvature. By [BG99] every minimising orbit stays within finite distance, in the 

universal cover ~ / o f  M, of a g-geodesic. In particular, one can define the ends 

of a minimiser in the boundary at infinity of 2~I. Call A the geodesic lamination 

obtained from A .  by replacing each orbit by the corresponding geodesic. 

From [CB88], we know that each boundary component of a connected compo- 

nent of the complementary set of ,~ in M is either a closed leaf of A, or a finite 
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sequence of non-closed leaves ~1,.-. ,hn such that (~i and (~i+1 are asymptotic 

(i being in Z /nZ) .  

Therefore, each boundary component of a connected component of the com- 

plementary set of A~ in M is either a closed orbit in A~, or a finite sequence 

of non-closed orbits ~1,-.-,  (~n such that ~i and (~i+1 are asymptotic (i being in 

Hence for each boundary component 5 of a connected component R of the 

complementary set of ~4~ in M there exists a neighborhood V of 5 in R such 

that  every arc contained in V, with its end on 5, is homotopic, with fixed ends, 

to an arc consisting of portions of 5 and a remainder of length arbitrarily small 

(or no remainder at all if 5 is a closed leaf). Now we just need to take U such 

that U N M \ .A~ is contained in the union over M1 boundary components of R, 

and over all connected component of the complementary set of .A~ in M, of such 

neighborhoods. | 

Proof of Corollary 3: Let h be a k-irrational homology class. Then the set of 

subderivatives to ~ at h form a face Fh of F~. Furthermore, /~ is differentiable 

in (d imHl(M,  R) - d i m F h )  directions. Take w in the interior of the faceFh. We 

have Fh C F~, so dim G~ > dim Fh. 

Then for every w ~ E G~ we have < J ,  h > =  0. Note that 

{ h E H I ( M , R ) :  < w ' , h > = 0 V ~ ' c G ~ }  

is an integer subset of H1 (M, R), of dimension dim HI (M, ]R) - dim G~. 

Since h is k-irrational this implies d imHl (M,R)  - d i m G ~  >_ k, whence 

d i m H l ( M , R )  - dimFh > k, which proves Corollary 3. | 

Proof of Theorem 2: Assume a sequence of Lagrangians Ln converges, in the 

C2-topology, to a C 2 Lagrangian L. 

Let (u +, u~) be a conjugate pair of weak KAM solutions for Ln. By [Fa00], 

p. 88 the functions (u +, u~) are equi-Lipschitz. By Ascoli's theorem we may 

assume that (u +, Un) converges to a pair (u+,u - )  of Lipschitz functions. Fur- 

thermore, u + -~ L + c(L). Take x C M and t E ~ .  For every n C N there exists 

a C 1 path 7n: [0, t] ~ M such that 7n(0) = x (resp. 7n(t) = x) and 

- = + 5 )ds. 

Take v E TxM a limit point of "~n(0) (resp. ~,n(t)). Then the extremal trajectory 

7: [0, t] ~ M of the Lagrangian, with 7(0) = x and '~(0) = v (resp. 7(t) = x 
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and ~(t) = v), is a uniform limit of "fn and so 

u±(7(t)) - u±(~/(0)) = (L + c(L))(% ~/)ds. 

This shows that (u +, u - )  are weak KAM solutions for L. Then for every neigh- 

borhood U of{x  • M: u+(x) = u- (x)}  there exists an N • N such that Yn _> N, 

{x • M: u+(x) = u~(x)} C U. Hence there exists an N • N such that Vn _> N, 

E ~ c E ~  . | 

4. On generic Lagrangians 

From now on we assume M to be a closed orientable surface. We begin with a 

LEMMA 7: Let L be a Lagrangian on a closed, orientable sm'face. The set S(L) 

of subderivatives to 3 at l-irrational homology classes is dense in H i ( M ,  R). 

Proof." Assume there exists an open set U in H I ( M , ~ )  such that UNS ( L)  = O. 

We may assume U to be convex. Then the set 

V = {h E HI(M, R): 3w • U, < w, h > =  c~(~) + 3(h)} 

is also convex. Call H the vector space V generates in H1 (M, R). Then, since 

V does not contain any 1-irrational class, the codimension of H is at least one. 

Now U = (.JheyFh, SO there exists h • V such that dimFh > 1. Such an h is at 

most (dim Hl (M, R) - 1)-irrational by Corollary 3. Take w in the interior of Fh; 

we have Vect F~ = E~, so there exists a closed curve 7 such that .4~ is disjoint 

from y. Furthermore, by semi-continuity of Vect F~ -- E~, there exists a convex 

neighborhood U1 of w in U such that for all w' in U1, Ao(L - wt) is disjoint from 

y. In particular, H is contained in the integer subspace defined by the equation 

Int([7], .]) = 0. 

Now assume by induction we have proved that for some 

2 < k < d imHl (M,R)  - 2 

there exist Wk in U, a convex neighborhood Uk ofo~k in U, and closed curves 71 := 

% - . . ,  7k such that for all w t in Uk, Ao(L - J )  is disjoint from 71 := 7 . . . .  ,7e. 

Likewise, define Vk to be the set of homology classes at which elements of Uk 

are subderivatives, and He to be the vector space generated by Ve. Then Ilk is 

contained in the integer subspace defined by the equations Int([7~], .]) = 0 for i = 

1 . . . .  , k and the codimension of He is at least k. Assume the codimension of He is 
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exactly k; then as previously Hk is an integer subspace. Any open (in the induced 

topology) subset of such a subspace contains a 1-irrational class, an impossibility. 

So the codimension of Hk is at least k + 1. Then, as previously, there exists 

hk C Vk such that  dimFhk > k + l .  Such an hk is at most (dimHl(M,N)-k-1)-  
irrational by Corollary 3. Take cOk+l in the interior of Fhk ; we have Vect F~k+l = 

E~k+ 1 , so there exists a closed curve %+1 homologically independent from 71 := 

7 . . . .  ,7k such that  ~4~k+1 is disjoint from 71 , . . . ,  7k+1. Furthermore, by semi- 

continuity of Vect F~ = E~, there exists a convex neighborhood Uk+l of Wk+l in 

Uk such that  for all w' in Uk+l, Ao(L - co') is disjoint from 71 , . . - ,  7k+1. 

By induction, we prove that  U contains a (dim H1 (M, R) - k)-irrational class, 

for all k = 1 , . . . ,  dim H1 (M, N) - 1, a contradiction. | 

By [Mt97], Proposition 5, any minimizing measure with a rational homology 

class must be supported on a union of periodic orbits, or fixed points. 

By [Mn96], Theorem D, for a given homology class h, there exists a residual 

subset Oh of C ~ ( M )  such that  for all ¢ E Oh there exists a unique closed measure 

in Adh(L + ¢). 

Then for all h with rational direction, for all ¢ C Oh there exists a unique closed 

measure Ph,¢ in .h4h(L 3-¢), supported on a union of periodic orbits %,¢. Every 

such periodic orbit is minimising in its homology class. Then by [Mn96], Theorem 

D, we may assume that  7h,¢ consists of pairwise non-homologous periodic orbits. 

For any given K only a finite number of integer homology classes have their L- 

action < K,  so then 7h,¢ actually consists of a finite number of periodic orbits 

7h,e#. For each of those orbits there exists a closed one-form wi such that  7h,,,i is 

the unique L - wi-minimising measure (cf. [Mt97], Theorem 8). Then by [CI99], 

Theorem D, we may assume 7h,0 to be hyperbolic in its energy level. 

Next, we prove that,  for all ¢ C Oh, there exists e(h, ¢) > 0, such that  for any 

G]I - e(h), 1 + e(h)[, there exists a unique closed measure #~,¢ in .]M),h(L + ¢), 

supported on a union of periodic orbits 7~,¢, homotopic to 7h,¢. 

Indeed, fix ¢ E Oh, and consider a sequence An of real numbers converging to 

one. Let #~ be ,k~h-minimising measures. The sequence of measures #n converges 

to an h-minimising measure, and the only possibility is that  it is supported on 

7h,¢. The latter being hyperbolic, a topological conjugacy argument proves our 

claim. 

The set of 1-irrational homology classes is a countable union of lines. Choose 

a countable dense subset hi, i E N. Call (9 the intersection over all i C N of (gh~; 
this is a countable intersection of residual sets, hence residual. Now for all ¢ E (9, 

there exists an open and dense subset U(¢) of the subset of 1-irrational homology 
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classes, such that  for any h E U(¢), there exists a unique closed measure ~h,¢ in 

fl.~h(L -t- ¢), supported on a union of periodic orbits 7h,¢. 

If  M has genus ~ 2, by Theorems 7 and 8 of [Mt97], every subderivative to ~ at 

a 1-irrational homology class is contained in a face of codimension one, whether 

on the boundary or in the interior. By Corollary 3, if a cohomology class is 

contained in a face of codimension one (resp. zero), then it must be subderivative 

to/3 at a 1-irrational (resp. zero) homology class. 

The same is true if M is a torus and ¢ C (9; for in that  case, in every 1-irrational 

homology class h, there exists a unique minimising measure. Such a measure is 

supported on one periodic orbit, hence/~ is not differentiable at h ([Ba94]). 

Hence when ¢ E (9, S(L + ¢) equals the set of cohomology class contained in 

a face of codimension one or zero. 

Now consider the set S~(L + ¢) of cohomology classes contained in the interior 

of a face of codimension one or zero, and subderivative to/~ at a point of U(¢). By 

Theorem 2, S~(L + ¢) is open in H I ( M , R )  for any Lagrangian L. Besides, since 

the interior of any face is dense in that  face, and the hi are dense in H1 (m, JR), 

S'(L) is dense in S(L), hence in H ] ( M , ~ ) .  Note that  for all w C S ' ( L +  ¢), AJ~ 

consists of periodic orbits with the same homology class, or fixed points. Indeed if 

AA~ contained two homologically distinct periodic orbits, then V~ would contain 

their homology classes and its dimension would be at least two, so w could not 

lie in the the interior of a face of codimension one or zero. 

In particular, for all ¢ E (9, a; C S'(L + ¢), A/t~(L + ¢) consists of one periodic 

orbit or fixed point. This proves Conjecture 4 for surfaces. 
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